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A mathematical formulation of the problem of guiding
one stage of a space vehicle 1s given as a boundary value
problem in differential equations. One approach to the
solution of this problem is to generate the Taylor's series
expansion (in several variables% about a known solution.
The theoretical nature of such solutions is discussed, and
a method for numerically conputing them is presented. This
method entails the numerical integration of an associated
system of differential equations, and can be used to obtain
the solution to any desired degree of accuracy for points
in a region to be defined. An extension of the method to
the problem of guiding several stages of a space vehicle
is also given, employing fundamental composite function

theory.
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Rovert W. Hunt and Robert Silber

SUMMARY

The problem of guiding a space vehicle in flight reduces
ultimately to the determination of an explicit basis for
making the steering decision at each instant of flight. This
amounts to the determination of the appropriate vehicular
thrust vector as a function of (possibly) time, current state
and current performance. Of course, this steering function
must be such that mission fulfillment results in an appro-
priately optimum sense.

In many cases, following the application of an optimi-
zation theory, such as the calculus of variations, the
steering function can be defined as the solution to a certain
boundary value problem associated with the differential
equations of motion and of optimal control. Certaln of the
initial values (initial values meaning values at current time)
are to be determined as functions of the other initial values
(and these other initial values are precisely the arguments
of the steering function) such that the resulting subsequent
motion leads eventually and optimally to mission fulfillment.
(Mission fulfillment and optimality imply conditions to be
met at a later time, thus resulting in a boundary value
problem.)

The explicit solution of such a boundary value problem
is generally dependent on the availability of the solution
of the associated system of differential equations. However,
techniques do exist involving high speed digital computers
which can be applied in lieu of this solution.

This paper, which consists essentially of a mathematical
formulation of the problem of guiding a space vehicle, pre-
sents a particularly general approach to solving the boundary
value problem, amounting to the expansion of the steering



function in Taylor's series (in several variables) about a
known solution. Using imbedding theorems of differential
equations and implicit function theory, it is pointed out
that under certain conditions the steering function is

(a well-defined) analytic function of its arguments, thus
assuring convergence of the obtained series. The truncated
result is, of course, the guidance polynomial.

The method entaills the numerical integration of the
Jacobi (linear) system associated with the considered
system of differential equations. This integration is
carried out for values corresponding to the previously
mentioned one known solution of the boundary value problem.
The integration is then extended to "Jacopl systems" of
(arbitrarily) higher order.

Extension of the method to several stages 1s presented,
enploying fundamental composite function theory.

The following three aspects of the analysis merit
special emphasis:

(1) The guidance problem 1s formulated as one of a
class of boundary value problems.

(2) The exactness of the results 1s in no way impaired
by linearization and/or modification of the involved equations.
The order to which the determination can be carried out is in
no way restricted by the analysis.

(3) The method is in no way dependent on particular
aspects and/or properties of the considered equations, except
insofar as certain assumptions regarding the analytic nature
of the equations and other related assumptions are made to
insure existence and analyticity of solutions.

This report is divided into three major sections. The
first section is intended primarily for the uninitiated
reader, and consists of discussions of a fundamental nature
concerning various pertinent aspects of analysis and of
guidance theory. It is not necessary to have read the
first section in order to read the latter two, but the reader
who encounters difficulty in finding motivation or concrete
examples for the material of the latter two sections is
referred to the first section.




The second section 1is concerned with the abstract
formulation of a certain type of boundary value probvlem
stemming from the guildance problem. After a concise state-
ment of the problem, the existence and properties of the
solution are treated.

The third section deals with the methodology of the
proposed numerical technique. A good understanding of the
method should point up the significance of the second
section.

SECTION I: SOME INTRODUCTORY CONSIDERATIONS
A. GENERAL

The material of this section is for the most part very
elementary and can be found in many texts. However, the
topics which are discussed are discussed with a view to
their application 1n the next two sections. For this reason,
many aspects of elementary definition and theory are given
an emphasis which might not be found in the usual texts,
and many properties and examples are exhibited correspondingly
more explicitly.

The treatment of the topics 1n this section is not
intended to be rigorous; the rigorous aspects are treated
in The next section.

B. ON SOLUTIONS OF DIFFERENTIAL EQUATIONS

Consider the simple system

Vi = Y=
. (1.1)

Y2 = -V

in which the dot indicates differentiation with respect to
time (t). We shall use the solutions of this system to
illustrate definitions and results related to more general
systems. In fact, we consider the system (s):



3‘71 =0 (yly---: In- t)
3.72 = fz(Yl:---: In» t)
ifn = fn(yl:-'°: yn: t)

Definition 1:

a set of n functions

on [a, b]
identity

91 (t)

holds on [a,b].

As an example,
95(t)=-cos ¢t
t-interval,

A solution to (s) on

and such that for each

£1(o,(t),0,(t),..

a
¢1(t),..., ¢n§t
1

«5 I t)

the two functions o

constitute a solution to
It is clear that the general solution of (1.1)

is given by the two functions

®,(t,A,B)

®2(t:A:B)

that is, for every pair (A,B) of real numbers, the functions
and &5(t,A,B),
constitute a solution of
each solution of §1.1

A,B

®,(t,A,B)

appropriate pair

A cos T +Bsin ¢

il

il

t-interval ([a, b] is

which are differentiable

=1,

(

2yeee, N

. Pn(t), t)

Note that the right hand side of (1.2
formed by composition of the functions ¢, (t),..
with the function fi(y,.,..

L3 Cpn(t

(t)=sin t and
1.1) on every

- A sin ©t + B cos €,

the

(1.2)

g is

(1.3)

g is represented by (1.3) for some

The statement that each pair of values (A,B) yields

a pair of functions
0b,
—:@2
3t
095
_ = -0,

ot

of t solving

consildered as functions of ¢,
(1.1) on every t-interval. Also,
(1.1) means that
(1.4)



these being equalities in t. But the assertion can in fact
be made much stronger. For note that

o
—(I)l (t:A:B)
ot

-Asint + B cos t =d,(t,A,B)

(1.5)

d
—o,(t,A,B)
ot

i
[
=

cos t - B sin t = -9,(t,4,B) ,

these belng identities in all three arguments.¥

Because of these considerations, it is of interest to
formulate the following definition:

Definition 2: TLet @,(t, ays.0ns 2y)s 0o(b, a150ens By )s..n,

o,(t, a,,..., ay) be partially differentiable with respect
to t for t ¢ [a,b] and for (a;,..., ay) ¢ Z, a subset of
k-space. Let G be the k+1 dimensional set of arguments
(t, a1,..., ayx) for which t ¢ [a,b] and (a,,..., ay) € Z;
i.e., G=la,blxZ. Then we say that the set of functions
0;(t, ay,.00, ay)seees oplt, a,,..., 85) constitutes a
solution of (s) on G if for each 1i=1,2,...,n and each
(t, a1,..., ay) ¢ G,

*¥0f course, the identity (1.5) does not necessarily follow
from (1.4). That is, the fact that certain choices for
(A,B) yield functions of t satisfying the differential
equations in t does not in itself imply that the equations
will hold identically in the constants as well. This matter
is greatly clarified by the augmented terminology
"identically on S." That is,to say that a certain equation
holds identically on S means that equality is satisfied for
each argument (or set of arguments) in S. The function-
theoretic implications of such a statement then become
dependent on the topological properties of S. If S has
sufficient properties, one may infer from the identity on

S that two functions are indeed the same function and so

be able to equate all derivatives as well. This 1s the case
in (1.4) since the set S consists of all values of t, A and B.

5



)
TN B (1.6)

fi(@l(t’al,o-.,ak);-.-,@n(t,algooo,ak),t) .

The further relations which equation (1.6) will impl
between the functions on the left and right sides of (1.6
depend on two things: the dnalytic nature of the functions
themselves and the topological nature of the set G. These
considerations are implicit in the freatment in part two of
this paper, and so will not be treated here. However, to
make the reader aware of the sort of considerations which
are pertinent to later analysis, a little will be said about
the example (1.1).

The functions @, (t,A,B) and &,(t,A,B) defined by (1.3)
correspond to the functions ®;(t,81,..058Kk)5 00,
on(t,ar,...,ax) of definition 2. Condition (1.6) of
definition 2 is fulfilled by (1.53. As has been pointed
out, the functions »/3t[%, (t,A,B)land ¢,(t,A,B) are indeed
the same function, considered as functions of three arguments.
This is, in this case, a consequence of (1.6), the fact that
the functions in (1.5) are analytic and the set on which
they are analytic consists of all complex t, all complex A
and all complex B. It is therefore possible to equate all
derivatives of the two functions.

The reader should be aware that it is easy to construct
functions o,(t,a,,a,) and ®-(t,a:,az) which satisfy condition
(1.6) on some set S, but such that the functions
3/3t[8, (t,A,B)] and @2(t, ai,az) do not turn out to be
identical. For example, let

d,(t,a1,a5) a; sin t + t sin a,

il

®p(t,a,,a,) = 2, cos t - t sin a,.

then the conditions

3%,

_(t:al:az) = (Dz(t:auaz) and
ot

05

‘—‘(t:auaz) = “@1(t:a1:a2)

ot




are met as required by definition 2 on the set G, consisting

of any closed t-interval for [a,b] and the set Z of all

pairs (a,, ap) with a; unrestricted but a, a multiple of m.
The point of all of this, once again, is that the strong

identity given by (1.5) is not an automatic consequence
of (1.6?.

We now consider the constants A and B in (1.3). These
constants might have been taken as "initial values" in the
following sense. A time 7T 1is selected as the "initial"

time and T, and T, are selected as the values of 1y, and
y2, respectively, at t=T. Then (1.3) becomes

Yy (t,7,m15m2) =micos (6-T) + mp sin (¢t - T)
(1.7)
Yo (t,7,m15m2) =-m1 8in (t - 7) + no cos (t - T)

and

0
é;(Yl (t:T:n13n2)> = Yg(t;T:'fh:”f)z)
(1.8)

S,
gZKYz(t:T:Ul:n2)> = - Y1(t:T:ﬂ1:ﬂ2)

these 'identities holding in all four arguments.

But along with the identities (1.8), there are two
others, which are a consequence of the definition of
N1, Nz @nd 7. These are



Yl(T:T:”fh:T)z) =N
(1.9)

Yo(7,7,m1:M2) = N2 »

in which identity holds in all three arguments. Thils means,

for instance, that Y, reduces to m; at t =7, regardless of

the values assigned to 7, T;,, and Ty. A similar statement
is applicable to Y;.

These statements about initial values have their
analogue in the general case. We summarize them in the

following rather lengthy definition.

Definition 3: Consider a set of functions Yi(t, T, Mise.es Tn)>

oy Yo(t, T, Mis..., Mp). Iet Z be a subset of n-space and

let Z' consist of all points (T,nl,...,nn) such that 7 ¢ la,b]
and (M, ,...,M,) ¢ Z, i.e., Z2' = [a,blxZ. Let

¢ = [a,b]lxZ', the set of all (t,7,M1,...,My) such that

t ¢ [a,bl, T ¢ [a,b] and (N1,...,MN,) ¢ Z. Suppose that

the set Y (t,7,M1,.eeslpy)seees Yn(E:75M1s0..,MN,) constitutes
a solution of (s) on ¢ in the sense of definition 2. Suppose
further that for each 7 ¢ [a,b] and each (My,MNzs...,My) ¢ Z
and each 1i=1,2,...,n,

Yj_(T:T:Th:---:T\n) = ﬂl . (1.10)*

Then we say that 7 is the initial time for the solution set
Yo (t,TsMiseeesNp)seees ¥ (6,7, M1s...5M,) and that the
arguments (M,,..,TN,) are the initial values of the solution.

This terminology is applicable, of course, on Z'.

* cf. (1.9) .




The discussion immediately following definition 2
is again of interest for definition 3. Without belaboring
the point, it is simply mentioned that if the functions Y3
and the set Z' possess sufficiently many properties, equation
(1.10) may be differentiated on both sides unrestrictedly.
This is of interest later on.

Questions concerning the existence and properties of
solutions such as those described in definitions 2 and 3
are not discussed here. They will, however, be treated
in Section II of thils paper for the particular type of
system (s) of interest.

Since the set Yy (t,T,M1seeesNn)seesYn(ts T5M1seeesNn)
of definition 3 is a solution of (s) on G 1in the sense
of definition 2, equation (1.6) is applicable. This yields

d
__'Yi(t:T:n1:3~-:nn) =
ot (1.11)

fi(Yl(t:Tinl:--':nn)}---:Yn(t175n13-°-:nn)1t)

for i=1,2,...,n, and for (t,T,MN1,...,MNy) € G .

This identity and its partial derivatives fTogether
with (1.10) and its partial derivatives are basic to
the method outlined in Section III. Once again it is
pointed out that differentiation of these identities must
be Jjustified, but this will be done in Section II.

C. THE JACOBI EQUATIONS

In this section the partial derivatives of the functions
Y;(t,7,M15...,My) with respect to the parameters (T5M1seeesTy)
will be considered. It will be convenient to assume that
all partial derivatives which come under consideration in
the present discussion exist and are continuous. Under
this assumption, certain systems of equations which these
partial derivatives satisfy will be derived.

Consider the identity (1.11). We will now take partial
derivatives on both sides of this identity, assuming that
all involved processess for equating of derivatives can be
justified. Differentiation of the right side of (1.11)
requires the chain rule, since the right side 1is a composite
function.




Suppose both sides of (1.11) are differentiated
partially with respect to M. The left side yields

3 JYj
— ——i(t:T:n1:~--:nni>:
Bnk dt

which, under the assumptions of existence and continuity of
of second partials, can be written

3 3y

- —(E,7,M1s..., .
at(am{< Misesny))

On the right side, application of the chain rule yields

For purposes of subsequent differentiations, it is
important that the reader realize explicitly the substitutions
(and the order thereof) called for by the chain rule. In
differentiating the right side of (1.11), one begins with
the original functions which were composed to yield that
function being differentiated. These are

fj_(:yl :---:yn:t)

and Yj(t,T,m,...,nn), j=1,2,...,n .
df4
One then forms —— , which, of course, is again a
oV ;
J

function of (yl,...,yn,t) (not of (t,T,ﬂl,...,nn)).

10




After the differentiation of £y with respect to Yqs the
same substitutions are made for the arguments of Bfi/Byj
as were made originally for f; itself. Thus, for the
considered differentiation, one substitutes into

3f3
- (yls-—-:yth)
Byj

to obtain

of,
1
- <Y1(t,7,n13---;nn),--.,Yn(t,T;ﬂ1,---,ﬂn),t) .

9V 5

Thus, the equation for the considered partial derivative,
written in such a way as to exhibit all arguments, is

o BYi( )
- —_— tJT’n1J°":nn =
3t 3 (1.12)
n
of.

i
2: ———<§l(t,7,n1,...,nn),...,Yn(t,T,nl,...,nn),p)
=1 95

an

_-‘(t:T:nl:---:nn)

onk

Clearly it will be necessary, in the further use of
(1.12), to introduce a shorter notation. Equation (1.12)

- has been so writften because 1t is not possible to determine
similar equations for second and higher partials, again by
application of the chain rule, without this explicit
statement of the involved arguments. For example, should
one wish to differentiate the right hand side of (1.12)
with respect to, say, Np> it is clear from inspection of
(1.12) that the chain rule would be applied to the term

11



of

— . Indeed, using arguments similar to those given in
oY j
the derivation of (1.12), one obtains

3%Yy
(t:T’nl:---:T)n) = (1.13)

ol

O MpdMk

noon e,
E: }: (Y1 ,T,nl,...,nn),...,Yn(t,T,nl,...,nn),ﬁ> .

BYJ oY,
. ———(t,T,nl,...,nn)———(t T,nl,..-:ﬂn) +
MK Bnp
n af
+»§? ———(Y (t, T,nl,...,nn),...,Yn(t,T,nl,...,nn), t)
L 0y
17
028Y .
J
__—(t:T:nl: e :T)n)
Bnpank

Clearly, under our assumptions of justifiabllity,
higher and higher order equations of this form might be
obtained by successive application of the chain rule. This

is of significance to the method outlined in the third
section.

It is interesting to note that the derivation of
equations (1.12) and (1.13) in no way depended on that
fact that the parameters mn,,...,ny were initial values
(cf. (1.10)). All that was used was the fact that the
functions Y5 (t,T,M1se0.57M were solutions of (s) in all
their arguments (cf. (1.11 From this it follows that

(1.12) and (1.13) are applicable whenever one or more of
the differentiations are with respect to 7.

12




Equation (1.12) might be written in matrix form. IFf

. . an_ . . - T1
Y is an nXn matrix with 5 appearing in the it row

nJj
th

and j column, and if F is an nxXn matrix with

dF
§§§(Y1,...,Yn,t) appearing in the 1% row and j%™ column,

then equation (1.12) reads

o Y = FY . (1.14)
ot

If (1.14) is considered for a particular solution
of (s), that is, if the values of TyNis...,Ny are fixed
in (1.14) so that every term becomes a function of t and
t only, (1.14) may be written

Y = FY , (1.15)

which is sometimes called the Jacobi equation associated
to (s) and the particular solution considered.

The initial value of the Y matrix in (1.15) is known
if it 1is supposed that the parameters MNis+e.57n do 1in
fact correspond to values at time 7. For by examination
of (1.10) one sees that*

33 3
——(t,T,T)l,...,”f)n) Z—'Yi(T,'T,T)]_,...,T)n)
an an
t=7
(1.16)
a( )
= — ']"). = 6- .
an i 1J

*Once again assuming Jjustifiability.

13



where &4 18 the Kronecker delta. 1In Tterms of the matrix
Y, this méans that Y is the solution of

Y = FY (1.15)

which at t=7 1s the nXxn identity matrix. Also, again
referring to (1.10),

a'r)kanj n o anka”f?j ANTsToM1se eyl
(1.17)
= __éi__(ni) =0
Bnkanj

for every 1<i,j,k<n; and it is clear that the values of
all higher partials at t=r-are zero as well.

Before going on to the next topic, one more aspect
of the Jacobi (and higher order) equations will be treated.
In the method discussed in Section III, the following
situation arises. A particular solution of (s) is under
consideration; there is given a set of values
T%,M1%,...,mn*. (We use asterisks to denote a fixed,
chosen set of values.) Beginning at t=7* and ending at
some final time te*>7%, the system (s) is integrated
numerically, using a high speed digital computer, to
yield the numerical values of Yi(t,7%,n,%*,...,npn*) for
each 1=1,2,...,n and each Tt¥*<t<te*, Of course, it may
be assumed that any other values which can be derived
numerically from these values are also known. Thus, 1n
particular, the matrix F of (1.15) is a numerically known
function of time. Since the initial value of Y is known
to be simply the nxn identity, and since Y satisfiles
(1.15), this equation can be integrated numerically to
yield the values of Y at each 7T¥<t<te¥*¥. 1In like manner,
(1.13) can be integrated to yield numerical values for all
second partials for v¥*<t<te¥, and indeed, it is clear that
numerical values for all partials (assuming their existence
and justification of The method) can be determined for
T¥<t<tp* and, of course, corresponding to the particular
initial values n.%,...,nn%.

14




To illustrate this, consider the system (1.1) (whose
solution is given by (1.7)). In order to properly analogize
the general situation, we must pretend that (1.7) is not
available. (Since (1.7) in fact is available, we have the
advantage of knowing a priori what numbers will result from
numerical integration from a particular set of initial
values. )

Assume that for the particular solution determined
by the values 7%=0, mi%¥=1, mng*=1, (1.1) is numerically
integrated up to tf*=m/2. According to (1.7), for each
O<t<m2 , the numerical values so determined will be

Y,(t,0,1,1) = cos t + sin t
: (1.18)

Y-(t,0,1,1) -sin © + cos ¢

To set up equation (1.15) for this case, it is
necessary to determine the F matrix. By comparing (1.1)
with (s), we see that

f1(Y1:Yz:t) =¥V and fz(Yuye:t) = - yy1 . Thus,
of, of, of s of>

—_ =0, - =1, —-— =-1, — =0

oY1 OV 2 oY1 oV2

and so

and (X.15) becomes

. 0 1
Y :< >Y , (1.19)
-1 O

15



which, when written out, yields

d 9Y, 0Y>

at 57')1 Bm

d oY, oY,

at 87')2 6772

d BYZ BY]_
dt 87’)1 5771
d BYZ BY]_
dt ons onz
Y1
If we for the moment denote S——,
N1
Y
V1 by B., and oY by Bs, we see that
e dMz

equations above are the system

%y = Oo
g = - O

while the second and fourth are
é1 = B2

Bz = - B

. oYz

oy &1, — DYy Qgz,
N1

the first and third

Clearly each of these systems is the same as (1.1)
itself, except that the involved quantities have different
designations. Applying (1.7) to a,
to g, and Pz, and observing from (1.16) that at

16

and o, and then




t=7%=0, ai1=1, az=0, P1=0, Pz=1, we see that 1= cos t,
as = - s8in t, g, =8in ¥, Bs = cos t. What we have thus
shown is the following: If (1.19) is integrated numerically
using the initial value (t=0) of Y to be the 2x2 identity,
then the numerical value of the matrix Y thus determined
will be, for each O<t<m/2, given by

cos € sin €
Y = .
-sin t cos ¢t

This result can be readily verified by differentiation
of (1.7) and subsequent substitution of 7%=0, ni1¥=1,
n=*=1.

This same numerical procedure can be applied to higher
partials (cf. (1.13) and (1.17)). The result of this is
that for any known solution of (s), the partial derivatives
of the solution to the initial value problem (cf. definition 3)
with respect to the initial values are numerically determinable
ATV A ot AaAT S A Alammedar 1 2 Aae ~P A Mact aoa o maremean oS~
a1 Olg Liiduv SOLUULOI,. ALTE€aGy vne 1Géa Ol a 1ayilIlr' s eXpandsidn

about the known solution suggests itself!

D. THE GUIDANCE PROBLEM GENERALLY

Any discussion of space vehicle guidance must involve
four major aspects. These are:

=

The flight environment,

N

. Vehicle performance characteristics,
. Mission,

= W

. Optimization criteria.

Mathematically, the first ifem amounts to the totality
of extra-vehicular accelerations experienced by the vehicle.
Examples are gravitational effects of one or more bodiles
and atmospheric 1ift and drag. The second item includes
those parameters pertaining to the vehicle and influencing
its motion. Certainly this would include thrust and mass
of the vehicle. For atmospheric flight, the shape would
also affect the motion.
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The third item, the mission, is assumed to determine
a number of mathematical relationships among the position
and velocity variables of the vehicle and possibly time,
whose simultaneous satisfaction is both a necessary and
sufficient condition for mission fulfillment. These
mathematical relationships are referred to as the mission
criteria. '

The last item, optimization criteria, resuilts from
the existence of a multiplicity of flight paths leading
to mission fulfillment. When confronted with such a
choice, it is natural to seek out the best or optimum
solution, after having decided upon criteria for defining
the optimum choice.

The exact way in which this can be done and a deri-
vation and presentation of the involved equations is too
lengthy a matter to treat here. 1Instead, we shall briefly
describe the nature of the optimization and the results
thereof. A detailed treatment of this problem may be
found in the references listed at the end of this report.

For the sake of definiteness, we assume we have given
a space vehicle with fixed performance. Let F be the
magnitude of thrust, assumed constant, m be the mass of
the vehicle at time t, assumed to vary linearly with Time¥
and x, y and z Dbe the position coordinates of the
vehicle in some coordinate system. The direction of the
thrust vector requires two angles for 1its specification;
let these be Xp and X, . The convention for measuring
these angles is not important here.

We assume the environment of the vehicle to be a
known function of time. If the vehicle is subject to the
gravitational effects of several bodies which are in motion,
then time will appear explicitly in the equations governing
the motion of the vehicle. In atmospheric flight, the
components of velocity x, y, z will also be expected to
influence the motion.

Again for the sake of definiteness, let us assume
vacuum flight so that (neglecting relativistic considerations)
the forces acting on the vehicle can be determined knowing
P, m, ¢, x, y, 2, Xp> and X.,. By an application of Newton's
second law and division by “m# 0, we can obtain

*It should be pointed out that these and later assumptlons
can be lifted.
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x = f(F,m,t,X,y:Z:Xp:Xy)
= g(F,m,t,X,y:Z:Xp:Xy)
7 = h(F,m,t;X:y:Z:Xp’Xy)

Actually, under our assumptions, F and m needn't
appear explicitly as arguments, since they are functions
of time and could be replaced by such. However, as
parameters, they have important physical significance
(especially their initial values§ and it is desirable to
retain their identity throughout. We do this as follows:
to the above system 1is added the two differential equations

m = C

and F

I
o

Also, the original set of 3 second order equations
is reduced to a system of 6 first order equations.by the
addition of the equations

X =u

y=v
z =W .,

Upon combining all of these, we obtain the first
order system

X =14

z = w
‘ (1.20)
u = f(F:m:t:X:y:Z:XpJXy)
= g(F:m:t:X,Y:Z:Xp:Xy)
w = h(F,m,t:X:Y:Z:Xp:Xy)
m=c
F=0.
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System (1.20) is not of the form of system (s) because
of the presence of the variables Xps Xy for which there
are no corresponding differential equations. Thus, X, and
Xy @are control variables. Their specification as functions
of time, together with the specification of initial conditions
would determine a unique solution to (1.20), if the right hand
gides of (1.20) have enough properties. In a given situation,
there are two outstanding questions to be answered concerning
the control variables Xy and Xv. First, do there exist
functions xp(t) and X (g) which when coupled with appropriate
initial values, resul% in mission fulfillment? To rephrase
this, do there exist functions Xp(t) and Xy(t) which, when
coupled with appropriate initial values, yleld a solution
of (1.20) which at some later instant satisfies (simultaneously)
the mission criteria? The second question is meaningful only
if the answer to the first is affirmative. It is: Is the set
of functions Xp(t), xy(t) unique, and if not, what set will
yield mission %ulfillment optimally?

Clearly, such questions can be formulated for systems

more general than (1.20). One assumes as given a system

X, = (Pl(Xl,Xg,...,Xm,U1,...,U.k,lC)

5(2 = (Pg(X1,X2,...,Xm,U.1,...,U.k,t)

(T)

Xm ~ (Pm(Xqu:---,Xm,u1,...,uk,t)
and inquires as to the existence of functions ui(t),...,ur(t)
which will take a set of initial values Xio0,...,Xpo for
X1seee3X into another set at a later time, or more generally,
will yier solutions for x1(t),...,xp(t) which, at some

later time, satisfy certain conditions of the form
F (t,X1,+..,%Xp) = O

If the answer is yes, the motion is said to be controllable
at the initial point Xi0,...,Xpo. If the functions
u,(t),...,ux(t) are not unique, it is reasonable to optimize
their selection.
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In summary, there are two basic guestions: existence
and uniqueness, or equivalently, controllability and
optimality. '

We return now to system (1.20). Suppose that at some
instant 7 of flight, the vehicle has coordinates Xp,Y0:Z0»
UosVosWo,sFo, and mg. Suppose that the mission criteria are
given by a set of equations Fi(t,x,y,z,u,v,w)=0,
i=1,2,...,k<b. The assumption k<6 1is a consequence of
later results and will be explained at the appropriate
point of the discussion.

Under the assumption of the existence of solutions
for Xp(t) and Xy(t) yielding solutions of (1.20) which
also satisfy the mission criteria, and under the assumption
that the optimization criteria can be expressed as the
minimization of some one function of the end-conditions¥*
possessing enough properties to make 1t amenable to available
mathematical techniques, an optimization theory such as the
calculus of variations can be applied to system (1.20). This,
for example, is the case if it is desired to minimize the
propellant consumption entailed in reaching the end-point.

Now, the significant aspect of the application of
calculus of variations to system (1.20) is that the result
is to reduce the system back to the form of (s). More
generally, a system of the form of (T) will become of the
form of (s) by the addition of more differential eguations.
The control variables might be replaced by new variables,
and the number might even be increased; but the end result
is a system of the form of (s)

Therefore, the analysis in Sections II and III begins
with the system (s). The actual optimization is of no
interest for our present purposes once (s) is given along
with certain boundary conditions to be discussed presently.

Now let n=m+k and consider the system (s):
¥1 = fl(yl:---:yn:t)
: (s)

&n = fn(Yl:---:yn:t) .

*The values of x,y,t,u,v,w,t, etc., occurring at the instant
at which the mission criteria are all satisfied are referred
to as the end-conditions.
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In the context of the guldance problem, the variables
Vi,...5Yn are separated into two types: the first type,
consisting of those variables in (1.20) for which there
are initially given differential equations and initial
values, will be denoted by Vis...,ym. The remaining
variables, consisting either of fthe original control
variables, or those introduced by the optimization, are

denoted by  ym+ls e« Vmyke

Again, by analogy to the guldance problem, we assume
that the initial values at €=7 of yi,...,yy are given;
let these be Nigeee M- '

Without bothering (presently) about guestions of unique-
ness and existence, let Yy (t,T,M1seeesNn)seees¥n(EsTsN1senesnn)
be the solution to (s) in terms of initial values, according
to definition 3. Then, in order to solve the guidance problem,
we must (1) keep the values of 7i1,...,Mn fixed in order to
reflect the actual initial values in flight and (2) find values
of the remaining initial conditions, 7Mmyl,...Mm+k which will
yield a solution of (s) satisfying at some later instant the
mission criteria (and other conditions imposed by the optimi-
zation to be mentioned shortly).

Note that every solution of (s) which at t=7 satisfies
yi=ni , i=1,2,...,m, is given by the k-parameter familly

yi = Yi(t:T:nI:---:nmJnm-l-l’""T}m“l"k) (1'21)

This means that there are available exactly k+1 variables,
namely €,7m+ls...>Tm+k » WwWith which fo satisfy the mission
criteria. Clearly the number of mission criteria cannot exceed
k+1. This accounts for the earlier assumption of k<6 1in
discussing system (1.20).

We now mention the other conditions imposed by the
optimization. If the number of mission criteria is less than
k+1, the calculus of variations, by way of a necessary condition
known as the transversality condition, furnishes additional
relationships to be met at the end-point (i.e., at the same
instant that the mission criteria are satisfied) in such a
way that the total number of conditions is invariably k+1*.
The single difference between the misslon criteria and the
transversality condition is that the arguments of the

* This statement clearly assumes that the involved functions
possess all those properties which may be required by the
optimization theory. The transversality condition determines
the optimum end point among those which satisfy the mission
criteria.
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conditions imposed by transversality 5enera1¢y range through
all the variables (t Viseoo ,yn) while The mission criteria
contain at most the arguments (t,y;,...,¥p)-.

For convenlence, we group together the mission criteria
and conditions of transversality into the one set

Fi(t:¥1s5.--5n) = 0, J=1,2,...,k+1 . (1.22)

The analysis of Sections II and III is concerned with
the functions obtained by the substitution of (1.21) into
(1.22) and subsequent solution for the appropriate t and
Nmals e« «Nmik in terms of mni1¥*,...,Mp¥. This is, after
all, the needed information. The solutions obtained in this
manner would yield that solution of (s) which was optimum
or which was at least determined through satisfaction of
conditions necessary for opftimality and satisfaction of
mission criteria.

Physically, the functions

Lol \ AanAd 4" 3
Nmat (Mg e v esnm)se e oo Mpaenys - - o5mp) and AUFERRRERMY,

obtained by the above method of solution, amount to specifi-
cation of the values of the control variables (xp andxy

at T as functions of values of position, veloclty, force,
mass at T and T itself. The function t(n,,...,nm)
represents the end time, at which the mission criteria and
transversality condition are satisfied. For the significance
of these functlons, the reader is referred to the first
paragraph of the abstract and introduction.

For later reference, we indicate the actual system to
be solved for mpy1se«-sNpyx and t:
(1.23)

Fj<t,Y1(t,T,n1,...,nm}nm+1,...,nm+k)...,Yn(same arguments{) =

for each J =1, 2,..., k+1.
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Thus, the equations (1.23) actually define the steering
function implicitly in terms of initial state and performance.
Existence, uniqueness, and other properties of the implicitly
defined functions are directly determined by the properties
of the functions in (1.22) and (1.21). Elegantly enough,
though the functions 1in (1.21) are not known, their properties
can be inferred from those of the system (s). Thus, with no
actual knowledge of the general solution of (s) (cf.(1.20)),
very definite statements can be made concerning the existence
and nature of the steering functions. All of these statements
will follow from examination of equations (1.23), (1.22), and
(s), along with information concerning one numerically known
solution of (s) satisfying (1.23).

SECTION II, ON THE FORMULATION AND SOLUTION OF A CERTAIN
BOUNDARY-VALUE PROBLEM STEMMING FROM GUIDANCE CONSIDERATIONS

A, DEFINITIONS AND ASSUMPTIONS

Let there be given a system of first order differential
equations
&1 = fl(Yl:'--:Yn:t)

Y2 = fE(y13""yn:t)
&vn = fn(yl "")yn}t)

If (2y,...,24,Ww) 18 an n+l-tuple of complex arguments, a
polycylinder containing the complex n+l dimensional point
(zy,...,2,,w) shall mean a set of the form

(Gt sz

lzi - Zil < ry for each i:1,2,...,n,lw1wl<rn+1}

and T, ,...,rn,7 are all positive. A function £1(zy,
will be said to be analytic at (z;,...,z2n,w) if F; is
expressible by a power serles

E:cslg (27 -2, ) 1 (25 -25 ) V2. .. (25-2p ) V0 (wew) Yo+l
1 Ve sV
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which is convergent at least in some polycylinder
containing (Zi,...,ZpnsW)-

ILet U be the set of real n+l-tuples (¥i,...,¥n,t) 8t
which each of the functions fi(yl,...,yn,tﬁ, i=1,2,...,0 ,
is analytic. Note that even though U contains only real
n+l-tuples, analyticity entails convergence of the power

series representation in the complex polycylinder.

Iet there be given as well a set of functions
Fs(€,¥1s000¥pn)s 371525000,k (2.1)

and let V denote the collection of real n+l-tuples at which
each of the functions Fj(t,y1,...,y,) 1s analytic.

Let the functions ¢4(t), i=1,2,...,n, be real-valued
for each real 7% < t < te¥, Suppose further that they
constitute a solution of (s) on [T*, tg*]; i.e., each
p;(t), i=1,2,...,n is a differentiable function of t on

CTx, tf*] and

éi(t) = fi(@l(t):'--:Qn(t):t) (2'2)

for each t e [7%, te*], and each i=1,2,...,n.

The right-hand side of (2.2) is obtained by the
composition of each ¢i(t) and fi(yi1,...,¥n,t). For later
notational convenience, we set

Cpi(T*) = ni*J 121;2;-..,1’1 - (2_3)

The solution set of @i(t),...,pn(t) will be said to be
a proper, real, analytic, non-singular, controllable solution

of (s) on [T*, tg*] if all of the following conditions are

met (we shall abbreviate the above statement to saying that
91(t),...,pn(t) form a P.R.A.N.C. solution of (s) on

(7%, tf*]):

25




(1) o1(t) is real-valued on [T¥*, tp*] for each
i=1,2,...,n and satisfies (2.2) there;

(i1) for each t e LT%, tg*], the point
(<P1(t):---:(Pn(t):t) e U, and (tf*:(pl(tf*):---:@n(tf*)) e V;

(111) Fj(tf*,wl(tf*),...,@n(tf*)) = 0 for each
j=1,2,...,k+1;

(iv) Fj(t,@1(t),---,¢n(t))=% O for all j simultaneously
for t e [T¥%, te¥);

(v) a certain Jacobian J % 0. J will be defined shortly.

A word about terminology. In the expression proper,
real, analytic, non-singular, controllable, each term has
its basis in one property required by the definition.
Property gi) is the basis for the term real solution;
property (ii) is the basis for the term analytic; property
(1ii) is the basis for the term controllable; property (iv)
is the basis for the term proper; and property (v) is the
basis for the term non-singular. In order to define the
Jacobian J of property (v), it is necessary to state the
following theoremn.

Theorem 1: Let the functions o¢4(t), 1=1,2,...,n
be real-valued and differentiable on [T*, tp*] and satisfy
(2.2) there. Suppose that for each t e [T*, te*],

(pa(t)sp2(t), .. on(t),t) ¢ U. TLet oi(7*) = ny*, i=1,2,...,n.
Then there exists a unique set of functions

Y1(t,’7’,'7’)1,. . -:T)n):- '°JY1’1(t’T’T)1’ o "771’1)
with the following properties:

(i) There is a positive number p such that for each
T ¢ [7*, tp*] and each complex n-tuple (7mi,...,7n,) such
that ln1—¢1(7)|+|n2—@2(7)|+...+]nn—wn(7)| < p, the functions
Y1 (t, Tomiseeesnn)seeesYn(t, Tyn1seee,mn) constitute a solution
to (2.2) on [T%, tex],

(11) vy (7,7,m1,...,My) = My for each i=1,2,...,n.
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(iii) for each 1i=1,2,...,n, ¥Y;(t,7,M1,...,n,) is an
analytic function on the complex n+2 dimensional domain
given by t e [T¥*, te¥*¥], T ¢ [7%, te¥],

[n1-01(7) |+ n2-02 (1) J++ + o 4| np-0p (T) ] < .

(iv) for each t e [7%, te¥],
Yi(t,T*,ﬂ1*,...,nn*) = ¢i(t)§ i=1,2,...,n.
From property (i) of this theorem and (2.2), we have

3Ys (2.4)

?;; (t,T,n1,...,nn)zfi(Y1(t,7,n1,...,nn),...,Yn(t,T,n1,...,nnLt).

Tet now, in the functions Y, (t,T,myse.eomp)se--s
Yh(t,7,M1,...,M,) of Theorem 1, the "initial values"
MNi,...5Np be divided into two groups: mi,...,7Ny, and
Mmalse«++sNMpiks Where m+k=n. We shall refer to the values
MNis...>Ny as the gstate parameters at 7 and shall refer to
Mm41s«++sMmek @S the control parameters at 7.

orm the composite {unctions

Jo vrAtr
wo  IiUW

Fj(tﬁYl(t’TJnl""’T)m’nm—{»l""’T)m—f—k)""’

Yt oMty e e sMmsMpne1s » « - s My ) ) FOT €acCH

J=1,2,...,k+1, and denote these functions of

t,T:ﬂl,---:ﬂm:ﬂm+1:---:ﬂm+k by
Fj*(t,T,nl,...,nm,nm+l,...,nm+k); J=1,2,...,%k+1.

Define the Jacobian J to be

B d(Fy*,Fa*, .o, Fien¥)

J =
d(Esmmets « + s M)
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The value of J obtained by setting t=te*, T7T=T%, and
ni=n;¥ for each i=1,2,...n 1s that value of J#0 required
by property (v) of the definition of a P.R.A.N.C. solution.

B. STATEMENT AND SOLUTION OF A BOUNDARY-VALUE PROBLEM

We now formulate the basic problem of interest in this
paper. Given values for the state paramefers, to determine,
as functions of these values, the control parameters and
final time such that the conditions

Fj(t,yl,...,yn) = 0; Jj=1,2,...,k+1 (cf. 2.1)

are met at the final time on the resultant solution. The
way in which this problem 1s solvable and the nature of its
solution is characterized by the following fundamental
theorem.,

Theorem 2: Suppose that the set of functions ¢i(t):
i=1,2,...,n, constitutes a proper, real, analytic, non-
singular, controllable solution of (2.2) on the interval
(7%, tp*]. Consider the system of equations

(2.5)
Fj*(t:Tﬁnla---:nm:nm+l:---;ﬂm+k) = 0; J=1,2,...,k+1

in which the functions Fj¥* are those previously defined.
Thezse equations implicitly define a set of functilons

Mmar = Bpr(TsN1seesnm)s r=1,2,...,k
(2.6)
t = tf(T:nl:-~-:nm)
for values of (7,m1,...,ny) neighboring (7%,n:%,...,1np*)
such that
3
Fj tf(T:nly-°-:nm)71n1"":ﬂm:ﬁl(75ﬂ13~'-;ﬂm):---:
(2.7)

Bic(Tom1s -+ - smm)) = O
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for each j=1,2,...,k+1 and for all complex arguments
(T,M1,...,7My) neighboring (i.e., sufficiently close to)
(7*,Mm1%,...,ny*). The functions (2.6) are analytic and
unique neighboring (7%,n:1%,...,70*).

Definition: The functions Br(7,n1s.-.,1m) are called
the control laws and tr(7,M1,...,n,) is called the final
time (or time of cutoff).

Remarks: All essential theory is contained in
Theorem 2. This theorem tells us that near a P.R.A.N.C.
solution, the guidance problem is uniquely solvable and
that the control laws are indeed analytic functions of the
state parameters. This being the case, these laws have
unique, convergent Taylor's series in their arguments,
whenever these arguments neighbor those on the P.R.A.N.C.
solution.

The next section is devoted to a numerical method for
calculating this series. Henceforth, it is assumed that
fhere has been determined numerically a P.R.A.N.C. solution
of (2.2), and this solution will be denoted, as in this
section, by @;(t) for 1=1,2,...,n and &t e [7%, te*]. All
functions and equations of this section will be used in
thelr already established context. However, for brevity,
the numerically known P.R.A.N.C. solution will be referred
to simply as a '"reference trajectory."

SECTION IIT:

THE NUMERICAL GENERATION OF THE TAYLOR'S SERIES
FOR THE CONTROL LAWS NEIGHBORING A REFERENCE TRAJECTORY

A. INTRODUCTION:

Given that one proper, real, analytic, non-singular,
controllable solution of (2.2) is known numerically¥*, and
this solution is henceforth referred to as the reference
trajectory and denoted by the set ¢i(t),...,pn(t) on
[T*, tp¥], the control laws Bp(Nis...,My)s r=1,2,...,k

*¥The numerical determination of such a solution on a digital
computer could be accomplished, for example, by the numerical
integration of (s) from some set of initial values and
subsequent iterations on the initial values until the condi-
tions Fj(t,y1,...,yn) = 0, J=1,2,...,k+1 are simultaneously
satisfied.
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and the final time tf(n1,...,nm) can be expanded in a
Taylor's series in several variables about the "known"
solutions Bu(T*,N1%,...,Mn%) = Npar®, r=1,2,...,k,
te(T®,m*, ..., Mp¥) = te¥. The series is obtained by the
determination o? the partial derivatives of the functions
Pr(TsN1sewosny)s v=1,2,...,k and %e(T,M1,...,7n,) with
respect to their arguments, QE.(fﬁn{ﬁ...,ng). The wvalues
of these partials are determined even though the functions
themselves are defined only.implicitly. From Section IT
it is known that all partials exist and that the Taylor's
Series 1s convergent, for one of the conclusions of
Theorem 2 1s, in fact, that the control laws and the final
time are analytic at and near (7%,m1%,...,n%).

Three fundamental identities will form the basis for the
entlre procedure. Clearly, one of these must be the implicitly
defining relations for the functions to be expanded. These
are given by (2.7), repeated here for convenlence.

Fj*(tf(T:nl:---:ﬂm):T:nl:---:nm:BI(T:nI:—o—fnm):---:

(3.1)
Bk(T,nl,...,nm)) =0

for each j=1,2,...,k+1L.
Recall that the functions Fj* were defined by

Fj*(t”r’nl’-..’%,nm"*_l,...’nm+k) =
Fj(t:Yl(t:T:nl:-o-:nm;nm+1:-'-:nm+k):o--:

Yn(t,T,T)]_, o o ,nm,nm+l, .« o ’T)m‘i‘k))

for each j=1,2,...,k+l

Recall that the functions Yi(t:T:nl’---:nm:nm+l""’nm+k)’
i=1,2,...,n are defined by Theorem 1of Section II and are
uniquely defined and analytic functions for arguments
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(t,7,M1,...,7my) such that t e [T%, tp*], 7 o [7*, te*] and

|n1-@(7d|41n2_@47)|+-... +|nn -Qn(7)|<:p. It is clear that
as functions of t, these solutions of (2.2) can be continued
to some values of t > tg¥*, because of analyticity at tf*.

The second fundamental identity is that one which
characterizes the parameters (7,m1,...,n) as being "initial
values." This is given in Theorem 1 of the previous section,
and is repeated here for convenience.

Y (T,7,M15...5m,) =0y, i=1,2,...,n. (3.3)

Again, this 1dentity can be differentiated throughout an
unlimited number of times because the left-hand side, being
given by the composition of the analytic functions
Yi(t,TsM15...5My) With the analytic function t=r, is again
analytic near (7%,7%,m1%,...,M,*). That the derivatives of
the two sides of (3.3) can be equated is a consequence of
having equality of the analytic functions Yi(7,7,M1,...,7p)
and ny not just at (7%,7%,n.%,...,mp%), but for all
T ¢ [1%, tp*] and all complex (ny,...,7np) satisfying

lm—qa(T)|+ +|nn-q>n(T)| < p.

The third identity is that which the functions
Yi(t:T:ﬂl:---:nn) must satisfy in order to be solutions of
(2.2). . This identity, given here for convenience, is stated
following Theorem 1 of the previous section by (2.4).

3Y; (3.4)
'——i(t:T:nl:'-'Jnn) =
ot

fi(Yi(t:T}ﬂli'--:nn):-°-:Yn(t:T:n1:---:nn):t)

for each i=1,2,...,n.
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Summarizing, each of the three identities (3.1), (3.3),
and (3.4) consist of analytic functions neighboring the
conditions r=71%, ny=n4s%*, i=1,2,...,n, and t ¢ [7%, Tp*],
Other identities are obtainable from these by unlimited
differentiations.

B. DESCRIPTION OF THE METHOD

Recall that the partial derivatives which are needed to
evaluate the coefficients for the first order terms of the

desired Taylor's series of the control laws and final time are
Obr

(T*:nl*: “ o :nm*)
onj

for r=1, 2,..., k; jJ =1, 2,...,m,

a8

—E (T*:ﬂ1*:---:”f)m*) for r=1,2,...,k and
AT

ot

= (T%,m%,...,my*) for j=1,2,...,m and
an

ote

E— (T*:n1*:--'377m*)

oT

Bearing this in mind, differentiate both sides of (3.1)
with respect to n, for arbitrary but fixed 1 < 4 < m.

This requires the chain rule and equation (3.2). The result
is

— —= —= = 0, in which
ot on, p=1 Byp on,

32




p

k
dY,  3Y, dtp Y, 3,  3p
-k f,’e, ), P =

an, ot dm, dm, rddmy.dm,

Combining these, we obtaln

(3.5)
o .

—_— ¢

BFj Btf n aFj 3Yp atf + BYp + k aYp BBP] _

ot any p=1 oyplot on, 9om, r=1 OMmepr 0Ny

Several comments need to be made concerning the above
identity. First of all, for purposes of subsequent differ-
entiations, it 1s essential to note carefully the arguments
associated with each of the partials appearing in (3.5). The
reader who is in doubt concerning this matter is referred to
Part C of Section I.

Secondly, note that (3.5) is valid for each

1l <4 <m and each 1 < j < k+1.

An equation similar to (3.
of (3.1) with respect to T.

+ +
dt aT T r=1 ONpey OT

—_— — +

n
OF; dtp JF [aYp aty Y, X dv, BﬁrJ .
ot dr  p=1 dvp

which is valid for each 1 < j < k+1.

Let now, in (3.5) and (3.6), the values t=be¥*, T=T%,
ni=mi* for i=1,2,...,m be substituted for the arguments of
the involved partials. Then, and this is the kernel of
the entire formulation, equations (3.5) and (3.6) will yield,
in a manner to be described, linear systems which determine
precisely the numerical values of those first order partial
derivatives necessary for the determination of the coeffi-
cients in the Taylor's expansion of the control laws, as
described in Part A of Section III. To see how this is so,
consider equation (3.5) for g=1. As j runs from 1 to k+1,
there results a set of k+l equations involving the desired

unknown partial derivatives
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ote 0B1 OBy
— (1%, m1*, .o %), (% Mm%, ooomp®)sens,
oM oM dM1

This constitutes a system of k+1 linear equations in k+1
unknowns. The determination of the solution of this system
is contingent upon the availability of numerical values for
all other quantities appearing in the equations and upon

the nonvanishing of the Jacobian, J, of the system. Satis-
faction of the latter condition is implicit in the definition
of a reference trajectory, but 1t is in fact the case that
the other numerical values of the former condition are not
at this point available, The remaining parts of Section IIT
will be devoted to the description of a technique for
obtaining these values.

Similar statements are applicable to (3.5) as {4 assumes
each of the remaining values 2, 3,...,m. Also, (3.6) yields

a system of k+l1 equations linear in the k+1 unknowns

oty JPr
_— Y — I = 1, 2,...,k.

3T  oT

Summarizing, we have seen that differentiation of (3.1)
yields a non-singular linear system whose solutions furnish
"first order" numerical values desired for the generation
of the Taylor's series for the control laws and final time.
The solution can be effected once the numerical values of
all other quantitiles appearing in the system are known.

Before going to Part C and the determination of the
numerical values of the other quantities appearing in the
various linear systems, consider the systems obtained by
subsequent differentiations of (3.1). These clearly involve
second and higher order partial derivatives of the control
laws and final time, both pure and mixed. Upon performing
one such (arbitrary) differentiation, it becomes more or
less apparent that the totality of possible differentiations
of (3.1) with respect to the involved arguments yields non-
singular linear systems, the solutions of which yield,
assuming the avallability (once again) of numerical values
for all other partials appearing in the systems, all numeri-
cal values of the partial derivatives necessary for the

generation of the Taylor's series for the control laws and
final time,.
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The equations resulting from higher order differentiations
of (3.5) and (3.6) are rather lengthy, but nevertheless
straightforward. For example, suppose it 1s desired to
differentiate (3.5) with respect to mng. The very first factor
appearing in (3.5) is

BFJ

3t
which, according to the chain rule, has for its arguments
exactly those of the left side of (3.1). This means that
differentiation of

aFj

ot

results in an expression of the length of that of (3.5)
itself. 1In fact,

n
> /aFj> 8y 3ty y 2°F; [av, atp oY, i 3Y_ 2By
- + +

\ 2
am_\ 3t 3t 3, atay, | 3t aMg 3y .oy ANy, a7

p=1

Similar differentiations are involved for the cother
terms of {(3.5). But the result is again a linear system,
this time in the unknown second partials. The Jacobian of
this system is, as in every case, the same Jacobian J # O
defined in Section II in connection with non-singularity
of the reference trajectory. It is clear that certain other
second order partials must be known numerically before
solution for the desired partials can be effected, just as
in the case of the first partials. And as more and more
differentiations of (3.1) are carried out, the solution of
the linear systems for higher and higher order desired
partials will require prior determination of numerical
values for other partials appearing in the identities of
increasingly higher order.

We now turn to this deftermination.

C. THE NUMERICAL DETERMINATION OF PARTIAL DERIVATIVES NEEDED
FOR THE SOLUTION OF THE LINEAR SYSTEMS OF B

Let us first decide what numerical values are needed in
order to set up any of the linear systems in B. Since every
linear system results from differentiation of (3.1), which
in turn is dependent upon (3.2) for its definition, examination
of these two identities should yield the desired information.
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For purposes of the present discussion and for the sake
of brevity, let all of the arguments appearing in (3.1)
(these are 7,M1,...,Ny) be denoted by the vector a, where

o = (AosQ1seeesp) With ao =T, a1 =nq, i=1,2,...,m.

Let the functions g,(a), Bz(a),...,Bk(a) (the control laws)
be combined into the single vector function g(a) with
component functions (By(a),...,fr(a)). Finally, combine
the functions Y;,...,¥Y, 1into the single n-dimensional
vector Y. With this new notation, combine (3.1) and (3.2)

to obtain

FJ-(tf(oc),Y(tf(oc),oc,ﬁ(oc))>= 0, J=1,2,...,k+l 57)

In this new notation, (3.5) and (3.6) differ only in
the index of the argument with respect to which differenti-
ation is being carried out. For convenlence, we rewrite
them in the new notation.

(3.8)
dF; dte 1 dF;[3Y, 3ty JY kK dY, 3B
B R S ;][ = + —E 4 P _Zi-o0
o0t day, p=loyplot oda, da, T=l Onpip dq
for each j=1,2,...,k+1.
Since this system is to be solved for the terms
oty OPfp L. . .
3&;’ gazy r=1,2,...,k, the quantities to be determined are
oFs oF: oY, oY dY
J: » J} p; p,and P
ot Byp ot  oa, 3Mptp

Differentiation of (3.8) with respect to ag will yield a
02te 2B
dagoay’ dagday

linear system to be solved for , r=1,2,...,k+1.

Without writing out the entire formula, we observe that upon
application of the chain rule, there results an identity
involving
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- 2 -
02F;  07F;

%Y

oF. 2
o FJ o Yp D

2 2
) ¥y 9=Y,,

362 dypdt dydy, ObF dtdag dtdnyp

2
o Yy

2
9%y,

2

Bazaas

s , along with first partials which can be
0% Oy MmOy

assumed known from the solution of (3.8).

It is clear that this 1list includes every possible
second partial of Fj with respect to combinations of the
arguments (t,yi1,...
of the Y
(BsotosseesOmsNmelse--»Mmak)e A similar statement holds for

,yn) and every possible second partial

with respect to combinations of the arguments

all higher order systems; it is in every case necessary to
obtain numerical values for all partial derivatives of the

Fj and Yp of a given order.

The easiest and most directly obtainable of these are
e partials of the Fj. For it is assumed that the equations

FJ(t,y1,...,yn) =0, j=1,2,...,k+1 are explicitly known
(in the guidance problem either as given mission criteria
or as derived transversality conditions). Therefore, these
expressions can be differentiated to obtain explicit expres-
sions for their partials. These are then evaluated for
t=te*, ao=1¥%, ai=ni*, 1=1,2,...,m, MNgpip=pe*, r=1,2,...,k.
This amounts to insertion of the values of yi,...,¥yn at the
end point of the reference trajectory,which is numerically
known. In this way, all partials of the Fj can be obtained
numerically.

The determination of the partials of the Yp is more
involved because the functions Yp are not available. The

description of the method for determining the partials will
consist of a complete and detalled treatment of all involved
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first and second order partials, followed by appropriate
comments concerning the general case. The general order

- and type of partial is not treated in detail for two
reasons: first, the generalization of the procedure is
relatively straightforward, and secondly, the notation and
length of formulas for higher order cases are somewhat
problematic.

The functions Yp, by virtue of being solutions of
(s), must satisfy (3.4). Reverting to the original notation,
let (3.4) be differentiated throughout with respect to UEE
Then subsequent substitution of the values. T = 7%,
N1=N1%s ..., M=% results in an equation involving only

time. This equation is, in fact,

_ _— —— , i,j=1,2,...,n . (3.9)

BYi> ii ofy oYy,
u=l oyy aﬂj

A similar equation results from differentiation with

respect to 7:

1’1

dfy Yy
( ) - T i=l,2,...,l’1. (3-10)
u=1l dy, OT
Equation (3.9) for every i,j=1,2,...,n and equation
(3.10) for every i=1,2,...,n can be combined into a

single matrix equation as follows. Let F be the nxn

of' 3y

matrix with g—— as the (i,j) entry; i.e.,
y.
J
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aj-:.1 af.1 Bf1 }

0¥V:1 oY d¥yn
of,  of, of 5
391 dve O¥n
F= . : : (3.11)
3y af.-n afn
. 3. g;;

F is considered as a function of time only, since we
have set 7T=T¥,N1=N1%,.,..,M="xn*. Notice that F is a numeri-

cally known matrix function of time since all formulas for
of+
S—E can be obtained by direct differentiation of the right
yJ

hand sides of (s) and the arguments (yi,...,yp,t) are given

by values along the reference; i.e., by the numerically known
functions @q.(t),...,pn(t).

Let Y be the nx (n+l) matrix

(E;; oY, oY, S;—\\

3m  dmaz  dmy T

BYZ aYg aYz BYZ
v - | Om1 972 omy o7 | (3.12)
oY, oY, oY,  dY,

dn:  dm=  dm, dT
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Again, each element of Y is considered as a function of
time only. By direct comparison, we see that (3.9) and
(3.10) are equivalent to the single matrix equation

Y-FY. (3.13)

Since F is numerically known, solutions to (3.13) can
be generated by direct numerical integration once initial
values are known. But the value of Y at t=7% ig in fact
known 1in the following way.

By differentiation of (3.3) with respect to Ny, wWe
see that

dY4 (Y et

() e .

ony /t=T an

the Kroneckéer delta. By differentiating with respect to
T, We have that at t=T1,

oY oY
— = - : (3.15)
oT ot
Y4
But =t " f; from (s), understanding that the values

=%, m1=n1%, ..., L,="p* are used. Thus at t=7%,

(1 o o0...0 £1)

O 1 0...0 -fg
Y =|. . . . . (3.16)
0 0 o . 1 -
N Y

Hence, numerical integration of-(3.13) using the initial
value at 7% given by (3.16), will yield, at t=te¥*, numerical

values for all needed first partials of the Y _ except the

p

ho




JY
term aép . This, however, is simply given (from (s)) by

the value of f at vi=01(te¥), ..., yn=0n(te*), t=te¥. This
then yields, via. the solution of (3.8), all first partials
necessary for the generation of the linear terms of the

Taylor's series for the control laws and final time.

We now describe an analogous procedure for generating
second order terms. The reader is reminded that the second
order partials whose values presently are of interest are
all second partials of the Yp
arguments in (7,M1,...,MNn). An equation analogous to (3.9)
and (3.10) (or (3.13)) for the second partials can be obtained
by differentiation of (3.9) and/or (3.10) prior to substi-

tution of the arguments 71=7¥,n:=n:1%,...,Mn="In*, followed

with respect to pairs of

by these same substitutions. Thus, for example, differen-
tiation of (3.9) with respect to m, yields

ii d2f; 0Y, 9Yg n df; d2Y,

+ ) . (3.17)

1 dygdy, 9ny dn, U=l dyy dM,dny

By differentiations of (3.9) and (3.10) with respect to T,

similar expressions can be obtalned for

d2Y4 d /32y
and —

ATAN; dt \o72

We treat (3.17) as representative of all three cases.

Assuming that the first order analysis has already
been carried out, i.e., assuming that (3.9) and (3.10)
(or (3.13)) have been numerically integrated, all expressions

on the right side of (3.17) are numerically known functions

41



d2Y,

of time, with the exception of , which is, after all,

OM 40N 3
Bzfl
the sought-after quantity. For,a , considered as a
YsVu
function of the arguments (yi1,¥yz,...,¥n,t), can be found

by direct differentiation of the right side of.(s), and the
arguments yi,¥z2,...,¥n are, as in the integration of (3 13),

3Y, Y

given by y1=@1(t),...,yn=¢n(t). The terms S and gﬁ—
L
are numerically known, 1f the intermediate values of the

matrix Y in (3.13) are stored at each step of the numerical

dfy
integration of (3.13). And finally, g—i has already been
Ju
treated in the F matrix of (3.13). It is clear that similar

d BZYi ol BZYi
statements apply to the systems for ——-< and — )

at aTaT)J B’TZ
Hence, Jjust as in the case of (3.9) and (3.10) (or equivalently,
(3.13)), equation (3.17), for each i,j,4=1,2,...,n, can be

numerically integrated from t=7T¥%¥ to t=te*¥ to yleld numerical

32Y; 32Y; 32y
values of ————( and and corresponding to the
on ,Om . OTIN 4 d72
2713 J
arguments t=te¥,7=T¥,n1=m1%*,..., M=%, once initial values

(at t=7%) are known. These initial values are of three kinds:
2

(1) initial values of partials of the form

s> (ii) initial

n,M;
3%y 4
values of partials of the gorm 5;3553 and (iii) initial values
021Y4
of partials of the form 21 We treat them in this order.
T

Clearly, by (3.14), all partials of the first type,
at t=7, are zero. For partials of the second type, we réfer
to (3.15). According to (3.15) and (s),

Uo
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. (T5TsN1seeesNp) = = £3(M1sMaseesnpysT) (3.18)
T .

for each i=1,2,...,n. In conseqguence, we have
02Y; Bfi

(ToTsN1sevesnpn) = = —— (M1sMaseeesNnsT)- (3.19)
>73n; ’ n dyy i n

This equation furnishes the initial values for the second
type of partials.

For the third type, we use (3.15) again. It will be
clearer, however, to rewrite (3.15) exhibiting all involved
arguments.

— (7,7sm1s5+-45mMp) = - E;:'(TJT:nl:-~':nn)

QT

Using the chain rule to differentiate once again with
respect to T,

3%Y3 , 0%Yy %Yy 3%y
3tdT 372 3te  ardt
which gives
dZYy 32Y.  d2Y,
1__>5 Lo =, (3.20)
dT? oTot dt2

where the arguments under consideration are (T,T,nl,...,nn).

a 2Y.
Now (3.20) will yield the numerical value for 2 only if
2Yi 2
values are known for St and for These are obtained
T

from (3.4):
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)

g;'Yi(t:T:nl:o--:nn):fi(Yl(t3TJn1:---3nn);-'-:

Yn(t:T:ﬂl:---:nn):t). (3.4)

Differentiation with respect to 7 yields

= J, 8o that at t = T,

o1t J=1 Byj oT

BZYi n Bfi BY.

by (3.18),

(3.21)
d%Yy n ofy
= 2: - (ﬂ1:ﬂ2:---;ﬂn:T)fj(ﬂlJﬂz:---:ﬂn;T)-
dTAt |t=T j=1 Byj
BzYi
The other term in (3.20) is — . Differentiation of (3.4)
ot
with respect to t ylelds
3t J=1 dy; ot 3t

oYy
At t=7, (since > fj):

BeYi n afi( ) (
. — E ———— IEEY ,’T f. 30 0o s g ’T) +
dt 2 J=1 BYJ T)l n J m In
t=7
Bfi( )
4+ — e e , . 22
at M1 ﬂn T (3 )
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Combining (3.21) and (3.22),
d%Yy
oT 2

n of ’
Z—: 'a—7)1,.--,nn,T)fj(nl,...,nn,T) -
=7 a

of;

1
peuCIPRRRL ML) (3.23)

Equation (3.17) and the related equations can now be
numerically integrated from t=7%¥ to t=te¥. As a result,
all needed second partials are numerically known with the
exception of the parfials of the form

9%Y; %Y, J%Y,
s and
Btbnj otoT dt2

at t = tp*.

However, the first two of these are given by the appropriate
members of (3.13) at t tﬁ* while the latter is given by an
expression such as .22) differing only insofar as the

arguments ylzml(tf*),...ynzmn(tf*), t=tp¥* replace the

arguments y,=ni,...,¥n=np, L=T.

This then yields all necessary information for the
determination of the second partials necessary for the
generation of the quadratic terms of the Taylor's series
for the control laws and final time.

The generalization of the procedure to all orders and
types under consideration should at this point be fairly

dPyy

clear. All partials of the type R
d7Po3n,P1.. 3, Pn

Po + P1 + ... + pn = p, are obtained by numerical integration
of the appropriate analogue of (3.13) or (3.17). 1Initial
values for the integration follow from extensions of the
arguments presented for the second order analysis. When

3t937Po3n, P11, an P

dealing with a partial of the type
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one considers first the right-hand side of the differential
oPyy

d7Poyn,P1. .. 3npPn
and (3.17). Symbolically, this may be written

equation for , i.e., the analogue of (3.13)

d 3Py,

— )ka o
dt 67p06n1p1...8nnp;> PoPy -+ +Pn

in which Gpop1---p is a function of partials of ¥; of

n
orders less than or equal py. Then the expression for

D+
3P in

3tRrPoyn,P1.. .30, Pn

chain rule to effect differentiation of G
PoP1...Ppn

q times with respect to t. Upon completion of this, the

is ‘obtained by application of the

arguments yi=p1(te¥),...,yn=on(te*), t=te* are used to
obtain the needed values. As stated previously, we will
not be any more explicilt than this about treatment of
higher order terms since the method is relatively clear
and since the notation for the general case is somewhat
problematic.

D. EXTENSION TO CERTAIN DISCONTINUOUS REFERENCE TRAJECTORIES:

THE PROBLEM OF STAGING

In this, the final section, we consider the problem of
defining and generating the control laws and final time
neighboring a reference trajectory resulting from the flight
of a multistage vehicle. The problem actually treated will be
concerried with a two stage configuration; generalization to
more stages 1s immediate. The result of the introduction of
a second stage 1s a slight modification of the definition of
the control laws and final time (cf. (2.6)). Following a
brief discussion of the nature of the problem of staging,
the boundary value problem of Section II 1s appropriately
reformulated.
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In formulating the staging problem, we assume first
that every stage other than the last stage terminates at
a specified time. Therefore, if the vehicle consists of
n stages, we assume that there is given a set of n-1 values,

tlf,tzf,...,tn_lf, which are the times of termination of the

first through the n minus first stages, respectively.¥* 1In
some flights, it is desired to insert coasting periods
between stages, or to interrupt one or more stages to insert
coasts. For many purposes, a coast can be considered as a
stage in which thrust and mass flow rate are zero.

The form of system (s) depends on the vehicle construc-
tion, the flight environment, and the optimization (cf. Part D,
Section Ig. For this reasoh, it may well happen that the
system (s) will change from one stage to another. While such
a situation doesn't pose unsolvable complications, we will
nevertheless assume in this treatment that the system (s)
is applicable to all stages. There is still sufficient
generality to illustrate the application of the methods of
the last section to several stages, and application of the
methods to more general situations can be viewed as an
extension of these procedures.

Recall that in Part A of Section II, following Theorem
1, the initial values (at T) were divided into two groups,
the state parameters and the control parameters. Under the
assumption that staging is to occur at prespecified times
and other assumptions concerning the vehicle and its
environment, it can be shown that the control variables
(by which is meant those variables in (s) whose initial
values have been designated control parameters) can be
taken as continuous across stage junctions. This important
result can be found in Reference 3.

Consider now the behavior of the state variables across
stage Junctions. Some of these are necessarily continuous
there; this is clearly true of position and velocity coordi-
nates. However, other state variables can possess deter-
minable jump discontinuities at stage junctions. For example,
if separation occurs, there results a discontinuity in mass.

*¥ These times usually correspond essentially to fuel depletion
in each of the lower stages.
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Generally speaking, discontinuities can be expected in
thrust magnitude and propellant flow rate.

At each stage junction, therefore, it is assumed that
all control variables and some state variables are contin-
uous, while the remaining state variables possess jump
discontinuities. For those variables which are continuous,
the i1nitial values after staging are the gsame as the values
at termination of the previous stage. The discontinuous
state variables are assumed to have specified initial values
in each stage. This 1s because thelr values are dependent
on the vehlcle construction rather than on the flight path.

Bearing all this in mind, we reformulate the boundary
value problem of Section II to correspond to a two stage
flight of the sort just described. It is assumed, as in
that section, that there has been determined numerically a
reference trajectory. This reference, however, consists of
two stages. Suppose t1p denotes the instant of termination

of the first stage of the reference (and, according to prior
discussion, the instant of termination of the first stage of
every trajectory). We can certainly assume that 7 < tlf

for otherwise the problem reduces to that of one stage flight.
From the set of state variables, V1:¥254 445V (corresponding
to the state parameters, ni,Mz,...,n,) suppose Y1,¥25.4-Yp>

O < p<m are continuous across stage Jjunctions (and this
supposition 1s made for every trajectory, not just the
reference) while yp+1,yp+2,...ym possess Jjump discontinuilties
at the stage junction. Let the initial values of these state
variables at the beginning of the second stage be, in every
case, ngiﬁ,ngi;,...,7%f . Let the functions @1(t),®=2(t),...,
@n(t), T <t < te¥*, be the numerically known reference values.

The definition of a proper, real, analytic, non-singular,
controllable solution is essentially unchanged. The one
‘modification is in the definition of the Jacobian J of
Part (v). Just as in Section II, the functions defined in
Theorem 1 will have to be used in defining J and, for that
matter, the boundary problem itself.
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If Theorem 1 is applied to the reference trajectory
(assuming the reference satisfies the first four properties
of the definition of a P.R.A.N.C. solution) for the t-interval
[T, t1p], one obtains the family Yi(t,TsM1see.,mn)s
i=1,2,...,n on [T, tlf] which reduces to the reference for
ni=n;¥, 1=1,2,...,n. Theorem 1 can again be applied to the
second stage, yielding the family Z5(t,0,81,...,8),

i=1,2,...,n on [tlf, tf*], which reduces to the nominal
for appropriate initial values. These initial values are
c::tlf, and the values of Vis...,¥y on the reference at

the initial point of the second stage of the reference, as
opposed to the final point of the first stage. According

to the foregoing discussion of discontinuities at tlf, the
following is true. The initial values for Zi(t,0,81,...,8En)
at o= t1p are related tb fhe terminal values of

Y (6, 7,m1,...,0,) at t =t1, in the following manner:

At o = tlf:
\
8; = Y3 (f1p:T5M1seeesmn)s 1=1,2,...,p
£ = nfa; i=p+l,p+2,...,m > (3.24)
Ci - Yi(tl ’T,T)l”"’nn); i:m+l,m+2,...,n .
3 J

Equations (3.2L4) furnish the key to multistage analysis
The first and last lines specify continuity of certain of .
the states and the controls across the stage junction, while
the middle line specifies initial values for the discontinuous
states. It is agreed that (3.24) is to hold for all trajec-
tories, and therefore the arguments O,C1,...,Cn of the Z;
can be replaced by (3.24). In this way, we define functions

Zi(t;71n1:~-~:nn) by
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’ () @
zi(t’T-’nl""’nn):Zi(t’tlf’Yl’ o o o,Yp,T)p_‘_l,. ..,nm’Ym‘l‘l, . o,Yn)’

i=1, 2,...,n (3.25)

where, for each Y; appearing in (3.25), the arguments are
Yi(tlf’T’nl’.. Q’T)n)o

The boundary value problem now becomes the same as
before, except that the composite functions

Fj*(t’T,nl,aoo,nm’nm_*_l,..o"r)m+k), j=1,2,...,k+1 al”e given
by the composition

Fj(t’z,l(t,T,nl’lo "nn)""’Zi’l(t’T’nl""’T)nD’

and the Jacobian J is correspondingly different.

A1l techniques of the previous sections are now
applicable. One must bear in mind that the Fj* are now
doubly composite, since the Zj are themselves composite.
Thus, for example, in the differentiation of (2.7) to

obtain the analogue of (3.5), the chain rule must be applied
to the functions Zi as well.

Since the system (s) applies to both stages, equations
such as (3.13) are still valid for all t ¢ [T, te*¥]. There
is never any need to integrate (3.13) across the discontinu-
i1ties at tlf, since the partials needed are given by separate
integrations for the Y; from 7 to tlf and for the Z; from
tlf to te*. All of this is plain following differentiation
of (2.7), keeping careful track of the involved arguments.
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